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 Abstract 

The theoretical analysis of the temperature-dependent upper critical magnetic field is the main 

objective of this work. The temperature-dependent upper critical magnetic field (HC2) in the 

superconductor         is the main theoretical focus of this work. We demonstrate a clear 

correlation between the upper critical magnetic fields    
   

   ,     
       

 ,       , the Ginzburg-

Landau (GL) coherence length (   ), and the penetration depth (   ) with temperature, using the 

GL phenomenological equation. We have plotted the phase diagram of    ,    , and     versus 

temperature for        . Accordingly, the upper critical magnetic field decreases as temperature 

increases, eventually vanishing at the superconducting critical temperature of        . At the 

same time, the GL coherence length and GL penetration depth increase with temperature and 

approach infinity at the critical temperature, resulting in the breakdown of superconductivity. 

Our findings are consistent with previous experimental results. 

 

Keywords: CePt3Si, heavy fermion superconductor, upper critical magnetic field, GL coherence 

length, GL penetration depth. 

 

1. Introduction 

 
A material's ability to conduct electricity at low temperatures is known as superconductivity [1]. 

Every superconductor has a transition temperature (TC) that causes it to return to its normal state 

above and show superconductivity below. The transition from a normal state to a 

superconducting state is shown by the lack of electrical resistance at low temperatures. It is 

thought that electricity can flow continuously for a long time without attenuation or decay in a 

closed superconducting circuit. The magnetic field is a key component in the field of 

superconductivity. Superconductors are categorized as type I or type II based on how they react 

to an applied magnetic field. An external magnetic field strong enough to damage a material's 

superconducting state can be applied [2]. 
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As an alternative to strong electron-electron interactions, heavy fermion compounds offer spin 

fluctuations, as many of these systems are approaching magnetic instability or show weak 

magnetic order. By adjusting control parameters like doping or pressure, these materials can be 

tuned around a quantum critical point, where magnetic fluctuations are probably responsible for 

the formation of Cooper pairs and superconductivity frequently appears. Cooper pairs in these 

situations may adopt spin-singlet or spin-triplet configurations since they can arise in various 

angular momentum pathways. Lines or points may serve as nodes when the gap disappears, 

resulting in a highly anisotropic gap caused by the orbital angular momentum.  

 

Furthermore, these Cooper pairs of heavy particles carry the supercurrent. While spin-triplet 

pairing necessitates an inversion center, spin-singlet Cooper pairing can happen with time-

reversal symmetry. The difference between odd-parity (spin-triplet) and even (spin-singlet) 

pairing is lost in systems without inversion symmetry, resulting in a mixing of spin channels. 

The upper critical magnetic field (HC2) thus rises dramatically [3, 4 and 5]. 

 

Among the special kinds of superconductors are cerium-based heavy-fermion compounds. 

Mostly developed under hydrostatic pressure, they show superconductivity at a quantum critical 

point. Heavy fermion superconductors based on cerium include         (       ) [6], 

                 7],        (       )[8] ,        (        )[9]. 

 

Cerium-based heavy-fermion compounds are a unique class of superconductors. Most of them 

exhibit superconductivity at a quantum critical point, typically achieved under hydrostatic 

pressure. Notable examples of cerium-based heavy-fermion superconductors include 

        (       ) [6],                  7],        (       ) [8],        (   
     ) [9]. 
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The unusual crystal structure of the heavy-fermion superconductor CePt3 Si is due to its lack of a 

center of symmetry, or inversion symmetry (non-centrosymmetric), which means that there isn't 

a mirror plane along the c-axis. It has garnered a lot of attention from academics because its lack 

of an inversion center alters its physical characteristics, resulting in antisymmetric spin-orbit 

coupling [3, 10]. 

 
Figure 1. Crystal and magnetic structure of         . a) The arrows on the    - atoms indicate 

the magnetic moment lying in the basal c – plane [10]. 

 

CePt3Si crystallizes in a tetragonal structure with the space group P4mm and lattice parameters a 

= 0.4072 nm and c = 0.5442 nm [11–12]. The upper critical fields are    
    

    = 3.2 T and 

   
    

       
     

          [13]. This compound exhibits antiferromagnetic (AFM) order with 

a Néel temperature of TN = 2.2 K and enters a heavy-fermion superconducting state below TC = 

0.75 K. In CePt3Si, the upper critical field HC2(0) = 5 T exceeds the paramagnetic limiting field, 

intensely suggesting the existence of pure spin-triplet pairing [13]. 
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2. Mathematical Formulations 

2.1 Upper critical Magnetic field 

By reducing the multi-band CePt3Si superconductor to a two-band model and employing wave 

functions for the superconducting order parameters Ψ₁ and Ψ₂, the upper critical magnetic field 

in the Ginzburg-Landau (GL) free energy density functional is theoretically investigated as 

follows [14–18]. 
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where     and    are the free energies for each band,       the interaction free energy term of  

inter-band coupling of order parameters, 
  

  
 the energy stored in the local magnetic fields. The 

inter-band mixing of the gradients of the two order parameters and the inter-band interaction 

between the two order parameters are represented by the coefficients σ and σ₁. The effective 

masses of the charge carriers for the two bands are    
  and    

 . The temperature-dependent 

Ginzburg-Landau parameter is α, whereas the temperature-independent ones are τ₁ and τ₂. The 

vector potential is denoted by A. 

Inserting Eqs.  (2-4) into Eq. (1), we obtain, 
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(5)                                                                                                                                 We reduce 

Eq. (5) in the following way to obtain the Ginzburg-Landau equation for two-band model 

superconductors. 
    

   
                                                                                                                                     

(6a) 
    

   
                                                                                                                      

(6b) 

As     , the higher-order terms are neglected. Eqs. (6.1) and (6.2), the reduced Ginzburg-

Landau free energy density function becomes: 
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(7a) 
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Now, employing matrix notation, Eq. (7) can be written as, 
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Now, we can linearize Eq. (8) for the applied external magnetic field parallel to the c-axis and 

obtain: 

       
  

   
 (  

    

  
)
 

                                                                               

(9) 

      
  

  

   
 (  

    

  
)
 

                                                                                     

(10) 

Thus, Eqs. (9) and (10) become, 
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(11) 

The upper critical magnetic field can be calculated by considering the energy eigenvalues of the 

quantum harmonic oscillator. With the lowest energy levels      
 

 
    and      

 

 
   , the 

upper critical magnetic field at the ground state can be represented as a harmonic oscillation with 

frequency     
     

   
 and vector potential         in one dimension. Thus, Eq. (11) 

becomes: 

 

By taking into account the energy eigenvalues of the quantum harmonic oscillator, the upper 

critical magnetic field may be computed. The upper critical magnetic field at the ground state can 

be described as a harmonic oscillation with frequency     
     

   
  and vector potential A=HC2 X 

in one dimension with the lowest energy levels      
 

 
    and      

 

 
   . Eq. (11) thus 

becomes: 

*
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(12) 

Assume    
 

 =   
 =   . Eq. (12) becomes, 

|

     

    
       

     

  

    
     

  

     

   
   

| = 0                                                                                      

(13) 

Taking the determinant of the matrix of Eq. (13) and making some rearrangements gives, 
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This is a quadratic equation that can be solved using the quadratic formula, yielding: 
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Now, let    
  

       
 ,    

  

       
  and   

  

        
 ; where     

      
           

  are the 

corresponding effective coherence lengths for each band.    
   

     is the excitation energy, with 

η representing the gradient of inter-band mixing of the two order parameters in energy units, and 

   
   

 
 is the magnetic flux quantization. Hence, the expression for HC2 becomes: 
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 To solve Eq. (16), let us consider the following cases. 

Case I: If  (
 

     
  

 

     
  

 

      
 )

 

          (
 

    
 

    
  

 

     
 )                                               

          

In this case, the solution yields a complex result and will be ignored. 

Case II: If (
 

     
  

 

     
  

 

      
 )

 

          (
 

    
 

    
  

 

     
 )                                                 

  Now, using the Taylor series expansion, the upper-critical magnetic field becomes, 
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Due to the drag effect [19], the two-band superconductor in Ginzburg-Landau (GL) theory is 

reduced to an effective single-band superconductor, such that         . As a result, only the 

upper critical magnetic field is considered, and the simplified theory yields a solution to Eq. (19) 

for an effective single-band model. 

 

Thus we get, 

Considering the impact of the anisotropic mass tensor in Eq. (18), the Ginzburg-Landau 

coherence length will be incorporated into the expression for the upper critical magnetic field, 

yielding: 
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The effective GL coherence length (      
 ) is expressed as, 
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Then, Eq. (19) becomes, 
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(21) 

From Eq. (18), the expression for the upper critical magnetic field     
    

 when the applied 

magnetic field is parallel to the c-axis becomes:  
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+                                                                                                (22) 

 where,    
    

(0) 
  

  (    
  )

 
   

   is the zero temperature upper critical magnetic field parallel to the 

c- axis.  

If the direction of the applied magnetic field is perpendicular to the c-axis, then the expression 

for the upper critical magnetic field     
   (T) in Eq. (18) becomes, 

    
            

      *  (
 

  
)
 

+                                                                                     (23) 

where,     
   (0) =  

  

      
          

    
 is the zero temperature upper critical magnetic field 

perpendicular to the c- axis.  

 

Now, using Eq. (21), we can determine the angle dependence of the upper critical magnetic field 

for isotropic effective masses at an angle between the c-axis and the applied magnetic field at 

low temperatures. That is: 
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(24) 

 

From the experimental values, we have    
              ,     

    
          ,     

        

    
                [20] and                   . Thus, using Eqs. (22) and (23), along 

with      0.75 K, the mathematical expressions for the temperature dependence of the upper 

critical magnetic field, both  parallel and perpendicular to the symmetry axes in          are 

expressed as, 
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(25) 
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(26) 
The upper critical magnetic field anisotropy deduced from measurements parallel and 

perpendicular 

to the c-axis is small, i.e. 
    

    
   

    
      

           for T → 0. 

The pressure dependence of the upper critical magnetic field is found to be: 
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where,      
  and        are the upper critical magnetic field and the critical temperature values at 

each pressure respectively. 
 
Using experimental values for          at        at different pressure values, with  
    

            at          
          at           ,     

          at          , 
    

           at            and    
           at           with 0.75K, 0.7K, 0.43K, 

0.33K and 0.18K [21] becomes, 
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 The effect of an anisotropic effective mass    on the angular dependence can be determined by 

using the GL theory as follows, 

(
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Finally, the angular dependence of the upper critical magnetic field for CePt3Si at an angle   

from the c-axis can be expressed as: 
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where    is the angle between the applied field and the c-axis.   

 

2.2. Derivation of the of Ginzburg-Landau parameters  

The distance over which superconductivity can change without experiencing excessive energy is 

defined by the GL coherence length  
  

   , which is the length scale over which the order 
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parameter   may fluctuate [22]. Using the GL model, we can derive expressions for 

superconducting parameters such as the GL coherence length (     , approximately equal to the 

vortex core radius) and the penetration depth ((    )  as follows: 
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*

 

 
                                                                                                   

(30) 

But the GL temperature-dependent parameter        is expressed as,           *  

(
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+ [23].                  Thus, we obtain, 
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where       , is the zero temperature coherence length.  

 

Now, using          =11nm [24],     
      =10nm,     

               
 
and     

            
 
[25]   

in Eq. (33), we get, 
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The length scale associated with the Meissner effect is the Ginzburg-Landau (GL) penetration 

depth (   ), which describes the depth of penetration of an externally applied magnetic field. 

Consequently, the term "magnetic screening length" is frequently used [22]. According to the 

Meissner effect, an external magnetic field is completely expelled from the interior of a 

superconductor. However, there is a growing capacity for magnetic fields to penetrate a 

superconductor and flow within a very thin layer. The thickness of this layer, known as the GL 

penetration depth, can be calculated using the superconducting electron density and is expressed 

as follows [24]: 
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*

 

 
                                                                                          (35) 

If T  , then     . 

 

where  n and ns  are the total electron density and the superconducting electron density, 

respectively. 

Thus we get, 

       (
    

      
)

 

 
                                 

(36) 

Taking the ratio of Eq. (35) to Eq (36) gives: 
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(37)                               

From the two-fluid model [26], we have: 
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Combining Eqs. (37) and (38) to solve for       , we get, 
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Now employing,              and                we can obtain the value for the GL 

characteristic parameter(      
      

√   
    , which, in turn, determines          That is,  

                 [27]. 
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3. Results and discussion 

In this research, we have established the mathematical expressions and relationships between 

temperature, the upper critical magnetic field, and the Ginzburg-Landau (GL) characteristic 

lengths by using the well-known GL equation. Furthermore, the phase diagrams showing the 

effect of pressure on the upper critical magnetic field and the critical temperature of the two-

band high-temperature superconductor CePt3Si have been plotted by employing Eqs. (25) and 

(26) along with some plausible experimental values at zero temperature [20,21]. As shown in 

Fig-2, the upper critical magnetic field decreases as the temperature increases and ultimately 

goes to zero at the superconducting critical temperature of CePt3Si which is to mean that the 

magnetic field will be expelled out from the surface of the superconductor which is the  

 

Meissner effect .The plot shows that     has no significant anisotropy (
    

    
   

    
      

    ) [28]. 

 
Figure 2. Upper critical magnetic field parallel to ab-plane and c -axis versus temperature for 

CePt3 Si superconductor. 

 

Now, using Eq. (27), we have plotted the phase diagram of the pressure-dependent upper critical 

field and superconducting critical temperature, as depicted in Fig-3. As observed from the figure, 

the superconducting critical temperature decreases with increasing pressure, from 0.75 K (at 

ambient pressure) to 0.19 K at 1.2 GPa. At the same time, the upper critical magnetic field 
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decreases from             (at ambient pressure) to              (at 1.2 GPa) with the 

increase of applied external pressure along the a-axis. This is due to the antiferromagnetic and 

non-centrosymmetric nature of CePt3Si, in which the applied pressure results in spin fluctuations, 

as superconductivity is correlated with the antiferromagnetic state and is concluded to be stable 

at ambient pressure. Our work is in good agreement with the experimental results [22]. 

 

 
Figure 3. Pressure dependence of the upper critical magnetic field and critical temperature for 

        superconductor(the left side(our work ) and the right side (by Takashi Y.  et al. 

(2004) ). 
 

Similarly, as shown in Fig. 4, the upper critical magnetic field slightly decreases as the angle 

increases from    to    , reaching a value of     
    

 =2.7T [22], indicating that the anisotropy of 

the angle-dependent upper critical field is very small. As CePt3Si is an antiferromagnetic 

superconductor, the spin arrangements are affected by changes in the direction of the applied 

field, which is why the upper critical magnetic field varies with changes in angle. 
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Figure 4. Angle dependence of upper critical magnetic field for          superconductor. 

 

Furthermore, using Eqs. (32-34) and some appropriate experimental values, the temperature 

dependence of the GL coherence lengths    
     ,    

     and    
     is plotted as depicted in 

Fig. 5. As observed from the figure, the GL coherence length increases slightly with rising 

temperature and approaches infinity at the superconducting critical temperature. This indicates 

that the breakdown of Cooper pairs occurs at the superconducting critical temperature of 

CePt3Si, resulting in the vanishing of superconductivity. 

 
Figure 5. The temperature dependence of GL coherence length parallel to the three axes 

for                       .  

 

Finally, the temperature dependence of the GL penetration depth has been plotted, as shown in 

Fig. 6. It can be observed from the figure that the penetration depth rises (diverges) 

asymptotically as the temperature approaches   . This indicates the suppression of 

superconductivity or the breakdown of Cooper pairs. 
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Figure 6. Temperature dependence of the GL penetration depth for          

superconductor. 

 

4. Conclusion 

In the current research, we have investigated the upper critical magnetic field, the GL coherence 

length, and the GL penetration depth for the multiband superconductor CePt₃Si using the well-

established GL phenomenological equation. We obtained the relationship between pressure, 

upper critical magnetic field, and superconducting critical temperature. Furthermore, phase 

diagrams were plotted using MATLAB software. From the plotted phase diagrams, we conclude 

that the upper critical magnetic field of the superconducting CePt3Si is inversely related to 

temperature, which is in agreement with previous findings [21, 22, 24–31]. Additionally, it can 

be observed from the phase diagrams that, as temperature rises, both the GL coherence length 

and the GL penetration depth increase asymptotically and diverge as       , resulting in the 

disappearance of superconductivity. Moreover, pressure, the upper critical magnetic field, and 

the critical temperature for superconductivity are inversely related. 

 

Using the well-known GL phenomenological equation, we have examined the upper critical 

magnetic field, the GL coherence length, and the GL penetration depth for the multiband 

superconductor CePt3Si in the present study. We were able to determine the correlation between 

superconducting critical temperature, pressure, and upper critical magnetic field. Additionally, 

MATLAB software was used to plot phase diagrams. We infer from the exhibited phase 

diagrams that the superconducting CePt3Si's upper critical magnetic field is inversely 

proportional to temperature, which is consistent with other results [21, 22, 24–31]. Furthermore, 

the phase diagrams show that superconductivity vanishes as temperature increases since the GL 

coherence length and the GL penetration depth both asymptotically increase and diverge as 

T→TC. Additionally, pressure, the 
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